Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 544
1.
Int Immunopharmacol ; 133: 112025, 2024 May 30.
Article En | MEDLINE | ID: mdl-38677093

Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.


Angelica sinensis , Polysaccharides , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/therapeutic use , Animals , Angelica sinensis/chemistry , Angelica/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use
2.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Article En | MEDLINE | ID: mdl-38390941

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Angelica , Antioxidants , Mice , Animals , Angelica/chemistry , Molecular Docking Simulation , Dietary Supplements , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
3.
J Pharm Pharmacol ; 76(5): 559-566, 2024 May 03.
Article En | MEDLINE | ID: mdl-38215001

Imperatorin (IMP) is the main bioactive furanocoumarin of Angelicae dahuricae radix, which is a well-known traditional Chinese medicine. The purpose of this study was to elucidate the role of IMP in promoting absorption and the possible mechanism on the compatible drugs of Angelicae dahuricae radix. The influence of IMP on drugs' intestinal absorption was conducted by the Caco-2 cell model. The mechanism was studied by investigating the transcellular transport mode of IMP and its influence on P-glycoprotein (P-gp)-mediated efflux, protein expression of P-gp and tight junction, and cell membrane potential. The result showed IMP promoted the uptake of osthole, daidzein, ferulic acid, and puerarin and improved the transport of ferulic acid and puerarin in Caco-2 cells. The absorption-promoting mechanism of IMP might involve the reduction of the cell membrane potential, decrease of P-gp-mediated drug efflux and inhibition of the P-gp expression level in the cellular pathway, and the loosening of the tight junction protein by the downregulation of the expression levels of occludin and claudin-1 in the paracellular pathway. This study provides new insights into the understanding of the improved bioavailability of Angelicae dahuricae radix with its compatible drugs.


Angelica , Coumaric Acids , Coumarins , Furocoumarins , Intestinal Absorption , Isoflavones , Furocoumarins/pharmacology , Humans , Caco-2 Cells , Angelica/chemistry , Intestinal Absorption/drug effects , Isoflavones/pharmacology , Coumaric Acids/pharmacology , Coumaric Acids/pharmacokinetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Tight Junctions/metabolism , Tight Junctions/drug effects , Biological Transport , Occludin/metabolism , Plant Roots
4.
Sci Rep ; 13(1): 21733, 2023 12 08.
Article En | MEDLINE | ID: mdl-38066026

Based on geographical distribution, cultivated Chinese Angelica dahurica has been divided into Angelica dahurica cv. 'Hangbaizhi' (HBZ) and Angelica dahurica cv. 'Qibaizhi' (QBZ). Long-term geographical isolation has led to significant quality differences between them. The secretory structure in medicinal plants, as a place for accumulating effective constituents and information transmission to the environment, links the environment with the quality of medicinal materials. However, the secretory tract differences between HBZ and QBZ has not been revealed. This study aimed to explore the relationship between the secretory tract and the quality of two kinds of A. dahurica. Root samples were collected at seven development phases. High-Performance Liquid Chromatography (HPLC) and Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) were used for the content determination and spatial location of coumarins. Paraffin section was used to observe and localize the root secretory tract. Origin, CaseViewer, and HDI software were used for data analysis and image processing. The results showed that compared to QBZ, HBZ, with better quality, has a larger area of root secretory tracts. Hence, the root secretory tract can be included in the quality evaluation indicators of A. dahurica. Additionally, DESI-MSI technology was used for the first time to elucidate the temporal and spatial distribution of coumarin components in A. dahurica root tissues. This study provides a theoretical basis for the quality evaluation and breeding of improved varieties of A. dahurica and references the DESI-MSI technology used to analyze the metabolic differences of various compounds, including coumarin and volatile oil, in different tissue parts of A. dahurica.


Angelica , Oils, Volatile , Plants, Medicinal , Angelica/chemistry , Plant Breeding , Coumarins/chemistry , Chromatography, High Pressure Liquid/methods
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Article Zh | MEDLINE | ID: mdl-38114107

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Angelica , Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
6.
J Nat Med ; 77(4): 1009-1021, 2023 Sep.
Article En | MEDLINE | ID: mdl-37581741

Sampling surveys of Angelica acutiloba and A. acutiloba var. iwatensis, which are medicinal plants endemic to Japan, were conducted in the Chubu region in the central area of the main island of Japan. A. acutiloba grows in riverbeds in mountainous areas, while A. acutiloba. var. iwatensis grows on slopes near mountain ridges at 1000 m above sea level or on constantly collapsing rocky slopes and bare fields on developed land along asphalt roads in valleys of mountainous areas. Specimens of two wild Angelica species collected in this region were examined for maternal lineage by DNA polymorphism analysis of the atpF-atpA region for chloroplast DNA using direct sequencing and genomic component analysis by genome-wide SNP using MIG-seq. In this study area, while all A. acutiloba populations were monophyletic in both maternal and ancestral lineages, A. acutiloba var. iwatensis were genetically heterogeneous due to being composed of three maternal and three ancestral lineages to various degrees. In addition, a natural hybrid population with maternal lineage presumed to be A. acutiloba and paternal lineage A. acutiloba var. iwatensis was also found. In the present study, we report that the combined method of atpF-atpA and MIG-seq analyses is a useful tool for determining the population genetic structure of two wild Angelica species and for identifying hybrids.


Angelica , Plants, Medicinal , Angelica/genetics , Angelica/chemistry , DNA, Chloroplast/genetics , Plants, Medicinal/chemistry , Genetics, Population , Japan
7.
Molecules ; 28(13)2023 Jul 06.
Article En | MEDLINE | ID: mdl-37446909

OBJECTIVE: To clarify the accumulation and mutual transformation patterns of the chemical components in Angelica dahurica (A. dahurica) and predict the quality markers (Q-Markers) of its antioxidant activity. METHOD: The types of and content changes in the chemical components in various parts of A. dahurica during different periods were analyzed by using gas chromatography-mass spectrometry technology (GC-MS). The antioxidant effect of the Q-Markers was predicted using network pharmacological networks, and molecular docking was used to verify the biological activity of the Q-Markers. RESULT: The differences in the content changes in the coumarin compounds in different parts were found by using GC-MS technology, with the relative content being the best in the root, followed by the leaves, and the least in the stems. The common components were used as potential Q-Markers for a network pharmacology analysis. The component-target-pathway-disease network was constructed. In the molecular docking, the Q-Markers had a good binding ability with the core target, reflecting better biological activity. CONCLUSIONS: The accumulation and mutual transformation patterns of the chemical components in different parts of A. dahurica were clarified. The predicted Q-Markers lay a material foundation for the establishment of quality standards and a quality evaluation.


Angelica , Drugs, Chinese Herbal , Antioxidants/pharmacology , Angelica/chemistry , Molecular Docking Simulation , Network Pharmacology , Gas Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
8.
Article En | MEDLINE | ID: mdl-37310353

In Korea, Angelica gigas is commonly known as Danggui. However, two other species on the market, Angelica acutiloba and Angelica sinensis, are also commonly called Danggui. Since the three Angelica species have different biologically active components, thus, different pharmacological activities, clear discrimination between them is needed to prevent their misuse. A. gigas is used not only as a cut or powdered product but also in processed foods, where it is mixed with other ingredients. To discriminate between the three Angelica species, reference samples were analysed as non-targeted using liquid chromatography-quadrupole time of flight/mass spectrometry (LC-QTOF/MS) and a metabolomics approach in which a discrimination model was established by partial least squares-discriminant analysis (PLS-DA). Then, the Angelica species in the processed foods were identified. First, 32 peaks were selected as marker compounds and a discrimination model was created using PLS-DA, and its validation was confirmed. Classification of the Angelica species was undertaken using the YPredPS value, and it was confirmed that all 21 foods examined contained the appropriate Angelica species indicated on the product packaging. Likewise, it was confirmed that all three Angelica species were accurately classified in the samples to which they were added.


Angelica sinensis , Angelica , Angelica/chemistry , Mass Spectrometry , Angelica sinensis/chemistry , Chromatography, Liquid , Metabolomics/methods , Chromatography, High Pressure Liquid
9.
J Ethnopharmacol ; 313: 116527, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37088236

ETHNOPHARMACOLOGICAL RELEVANCE: Angelica decursiva is a perennial herb that belongs to the Umbelliferae family. It is traditionally used to treat fever, upper respiratory tract infections, bleeding and hypertension. However, despite its extensive pharmacological potential, literature reports on its antihypertensive pharmacological properties are scarce. AIM OF THE STUDY: In the study, crude extract from A. decursiva roots was examined for its antihypertensive activity and its molecular basis was explored. MATERIALS AND METHODS: A. decursiva roots were extracted with ethanol, and isolated with silica gel normal-phase chromatography and reverse-phase high performance liquid chromatography. L-NAME-induced hypertensive mouse model was used to detect in vivo hypertensive activity. Thoracic aorta ring contraction activity and electrophysiology recordings were employed to evaluate in vitro antihypertensive activity and revealed an antihypertensive target, which was transiently expressed in HEK293T cells. RESULTS: Angelica decursiva ethanol decoction (ADED) exhibited significant antihypertensive effects in L-NAME-induced hypertension models and phenylephrine-induced vasoconstriction. Further screening revealed that demethylsuberosin is an essential component accounting for the antihypertension effects of A. decursiva. Voltage-gated calcium channel CaV1.2 is the likely target of A. decursiva for its antihypertension effects. CONCLUSION: The study suggests that A. decursiva and demethylsuberosin may be effective antihypertensive agents in preclinical studies. It appears that A. decursiva and demethylsuberosin exert antihypertensive effects by inhibiting the CaV1.2 channel, which contributes to the vasodilatory effect. The present study provides experimental evidence that A. decursiva is an effective remedy for hypertension in folklore. Demethylsuberosin could be a lead molecule for antihypertension drug development.


Angelica , Hypertension , Mice , Animals , Humans , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Calcium Channels, L-Type , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Angelica/chemistry , HEK293 Cells , NG-Nitroarginine Methyl Ester , Hypertension/chemically induced , Hypertension/drug therapy , Ethanol/therapeutic use
10.
Sci Rep ; 13(1): 6022, 2023 04 13.
Article En | MEDLINE | ID: mdl-37055447

Angelica dahurica (Angelica dahurica Fisch. ex Hoffm.) is widely used as a traditional Chinese medicine and the secondary metabolites have significant pharmacological activities. Drying has been shown to be a key factor affecting the coumarin content of Angelica dahurica. However, the underlying mechanism of metabolism is unclear. This study sought to determine the key differential metabolites and metabolic pathways related to this phenomenon. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) based targeted metabolomics analysis was performed on Angelica dahurica that were freeze-drying (- 80 °C/9 h) and oven-drying (60 °C/10 h). Furthermore, the common metabolic pathways of paired comparison groups were performed based on KEEG enrichment analysis. The results showed that 193 metabolites were identified as key differential metabolites, most of which were upregulated under oven drying. It also displayed that many significant contents of PAL pathways were changed. This study revealed the large-scale recombination events of metabolites in Angelica dahurica. First, we identified additional active secondary metabolites apart from coumarins, and volatile oil were significantly accumulated in Angelica dahurica. We further explored the specific metabolite changes and mechanism of the phenomenon of coumarin upregulation caused by temperature rise. These results provide a theoretical reference for future research on the composition and processing method of Angelica dahurica.


Angelica , Drugs, Chinese Herbal , Chromatography, Liquid , Angelica/chemistry , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Desiccation
11.
Phytother Res ; 37(5): 2187-2211, 2023 May.
Article En | MEDLINE | ID: mdl-37086188

Angelica species have been traditionally used for their medicinal properties. Recent studies have suggested their potential use as anticancer agents, making them an area of interest for further research. The review aims to summarize the current understanding of the potential anticancer effects of Angelica species and to provide insights for further research in this area. We searched for "Angelica" related information on Google Scholar, PubMed, ScienceDirect, Wiley, Science Citation Index Finder, and Springer link by searching keywords such as "Angelica," "Angelica phytochemical," "Angelica antitumor effect," "Angelica molecular mechanisms," and "Angelica clinical application." Included articles focused on the Angelica plant's anticancer properties and clinical studies, while non-cancer-related biological or phytochemical investigations were excluded. We conducted a comprehensive search of books, journals, and databases published between 2001 and 2023, identifying 186 articles for this narrative review. The articles were analyzed for their potential anticancer properties and therapeutic applications. Active compounds in the Angelica genus, such as coumarins, furanocoumarins, phthalides, and polysaccharides, exhibit anticancer properties through various mechanisms. Specific species, like A. archangelica, Angelica sinensis, A. gigas, and A. ksiekie, have the potential as anticancer agents by targeting cellular pathways, generating reactive oxygen species, and inducing apoptotic cell death. Further research into the properties of the Angelica genus is needed for developing new treatments for cancer. Phytochemicals from Angelica species possess potential as anticancer agents, requiring further research for the development of effective, low-cost, and low-toxicity cancer treatments compared to synthetic antitumor drugs.


Angelica , Neoplasms , Humans , Phytotherapy , Angelica/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytochemicals/pharmacology , Neoplasms/drug therapy , Ethnopharmacology
12.
Talanta ; 255: 124253, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36630786

In this study, the spatial distribution and accumulation dynamics of volatile oil in Angelica sinensis roots was realized by fluorescence imaging combined with mass spectrometry imaging. The laser scanning confocal microscopy was used to determine the optimal excitation wavelength and the fluorescent stability of volatile oil in the sections of Angelica sinensis roots. The results demonstrated that 488 nm was the most suitable excitation wavelength for the identification and quantitative analysis of volatile oil. It was observed that volatile oil accumulated in the oil chamber of the phelloderm and secondary phloem, and the oil canal of the secondary xylem. The results also indicated that there were differences in content during different periods. Furthermore, the MALDI-TOF-MSI technology was used to study the spatial distribution and compare the chemical compositions of different parts of Angelica sinensis roots during the harvest period. A total of 55, 49, 50 and 30 compounds were identified from the head, body, tail of the root and root bark, respectively. The spatial distribution of phthalides, organic acids and other compounds were revealed in Angelica sinensis roots. The method developed in this study could be used for the in situ analysis of volatile oil in Angelica sinensis roots.


Angelica sinensis , Angelica , Oils, Volatile , Angelica sinensis/chemistry , Oils, Volatile/analysis , Mass Spectrometry , Optical Imaging , Technology , Plant Roots/chemistry , Angelica/chemistry
13.
Phytochem Anal ; 34(1): 139-148, 2023 Jan.
Article En | MEDLINE | ID: mdl-36376257

INTRODUCTION: The main chemical components of Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. are coumarins and volatile oils, and coumarins are regarded as the representative constituents with various pharmacological effects. OBJECTIVE: Based on matrix-assisted laser desorption/ionization time of flight mass spectrometry imaging (MALDI-TOF-MSI), a method for spatial distribution analysis of coumarins in primary root and lateral root of A. dahurica was established. Also, spatial visualization of coumarins in the roots of A. dahurica was realized. MATERIALS AND METHODS: α-Cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid, and 9-aminoacridine were used as matrices. MALDI-TOF-MSI was employed to analyze the standards of imperatorin, oxypeucedanin, and osthole. Based on the higher sensitivity and repeatability of MALDI-TOF-MSI, the CHCA matrix was selected. The matrix was used for MALDI-TOF-MSI in positive mode to analyze the distribution of coumarins in primary root and lateral root of A. dahurica. RESULTS: In total, 37 coumarins were detected in primary root and 36 coumarins were detected in lateral root by MALDI-TOF-MSI. The results showed that the coumarin content in primary root was higher than that in lateral root. Coumarins in primary root of A. dahurica were concentrated in the periderm, cortex, and phloem, whereas coumarins in lateral roots were concentrated in the phloem. CONCLUSION: The coumarins in primary root and lateral root of A. dahurica were directly analyzed without extraction and isolation, and the spatial distribution of coumarins was comprehensively visualized for the first time by MALDI-TOF-MSI, which provided a basis for distinguishing primary root and lateral root.


Angelica , Drugs, Chinese Herbal , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Coumarins/chemistry , Angelica/chemistry , Drugs, Chinese Herbal/chemistry
14.
Chem Pharm Bull (Tokyo) ; 70(11): 796-804, 2022.
Article En | MEDLINE | ID: mdl-36328522

We have developed a simple and accurate method for quantifying sugars in herbal medicines, which have hitherto been difficult to quantify. Using ultra performance liquid chromatography-quadrupole-time-of-flight (UPLC-Q-TOF)-MS and two types of columns with different chemical properties, we determined the optimum conditions for separating nine sugars (fructose, galactose, glucose, mannitol, sucrose, melibiose, raffinose, manninotriose, and stachyose) commonly found in herbal medicines. Separation was completed within 10 min when an apHera NH2 HPLC column was used, although galactose and glucose could not be separated. On the other hand, the nine sugars were completely separated within 16 min when a hydrophilic interaction chromatography (HILIC)pak VG-50 2D column was used. The calibration curves obtained using those two columns gave good linearity for the sugar standards, and the coefficient of determination was 0.995 or higher. Both columns showed excellent performance with short analysis time and high sensitivity. Using our developed method, we were able to quantify sugars in galactose-free herbal medicines within 10 min and in herbal medicines containing galactose within 16 min. We revealed that our method could be used for the analysis of sugars in Angelica acutiloba and Rehmannia glutinosa roots.


Angelica , Plant Roots , Plants, Medicinal , Rehmannia , Sugars , Angelica/chemistry , Carbohydrates/analysis , Chromatography, High Pressure Liquid/methods , Herbal Medicine , Monosaccharides/analysis , Oligosaccharides/analysis , Plants, Medicinal/chemistry , Rehmannia/chemistry , Sugars/analysis , Plant Roots/chemistry
15.
Molecules ; 27(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36235163

Angelica keiskei contains a variety of bioactive compounds including chalcone, coumarin, and phytochemicals, endowing it with pharmacological effects such as lipid-lowering activity, antitumor activity, liver protection, and nerve protection. This study aims to study the hypoglycemic and hypolipidemic effects of the flavonoid-rich extract from Angelica keiskei (FEAK) in an effort to exploit new applications of FEAK and increase its commercial value. In this paper, flavonoid compounds in Angelica keiskei were extracted using 50% ethanol, and the contents of the flavonoid compounds were analyzed by UPLC-MS/MS. Then, the hypoglycemic and hypolipidemic activities of the FEAK were investigated through in vitro enzyme activity and cell experiments as well as establishing in vivo zebrafish and Caenorhabditis elegans (C. elegans) models. The UPLC-MS/MS results show that the major flavonoid compounds in the FEAK were aureusidin, xanthoangelol, kaempferol, luteolin, and quercetin. The inhibitory rates of the FEAK on the activity of α-amylase and cholesterol esterase were 57.13% and 72.11%, respectively. In cell lipid-lowering experiments, the FEAK significantly reduced the total cholesterol (TC) and total triglyceride (TG) levels in a dose-dependent manner, with 150 µg/mL of FEAK decreasing the intracellular levels of TC and TG by 33.86% and 27.89%, respectively. The fluorescence intensity of the FEAK group was 68.12% higher than that of the control group, indicating that the FEAK exhibited hypoglycemic effects. When the concentration of the FEAK reached 500 µg/mL, the hypoglycemic effect on zebrafish reached up to 57.7%, and the average fluorescence intensity of C. elegans in the FEAK group was 17% lower than that of the control group. The results indicate that the FEAK had hypoglycemic and hypolipidemic activities. The findings of this study provide theoretical references for the high-value utilization of Angelica keiskei and the development of natural functional food with hypoglycemic and hypolipidemic activities.


Angelica , Chalcones , Angelica/chemistry , Animals , Caenorhabditis elegans , Chalcones/chemistry , Cholesterol , Chromatography, Liquid , Coumarins , Ethanol/chemistry , Flavonoids/pharmacology , Hypoglycemic Agents/pharmacology , Kaempferols , Lipids , Luteolin , Plant Extracts/pharmacology , Quercetin , Sterol Esterase , Tandem Mass Spectrometry , Triglycerides , Zebrafish , alpha-Amylases
16.
Phytomedicine ; 107: 154447, 2022 Dec.
Article En | MEDLINE | ID: mdl-36150345

BACKGROUND: Diabetic ulcers, which are characterized by chronic nonhealing wounds with a long-lasting inflammatory state, are a typical symptom in individuals with diabetes, and there is still no effective treatment for these lesions. Angelica dahurica plays a critical role in inflammatory diseases. Among numerous monomeric compounds, phellopterin has been shown to have anti-inflammatory properties. PURPOSE: To research the bioactive constituents in Angelica dahurica and their mechanism of action in treating diabetic ulcers. STUDY DESIGN: Chemical research of Angelica dahurica led to the identification of a new coumarin, dahuricoumarin A (1), along with seven known compounds (2 - 8). All compounds were tested for anti-inflammatory activity, and phellopterin, compound (3), significantly decreased the expression of intercellular cell adhesion molecule-1 (ICAM-1), a representative indicator of inflammation. Phellopterin can also increase SIRT1 protein, a key target for inflammation. In our research, we confirmed the anti-inflammatory effects of phellopterin on diabetic ulcers and explored the underlying mechanism of action. METHODS: The expression of IFN-γ, SIRT1, and ICAM-1 in human diabetic ulcer tissues was studied using immunohistochemistry. Streptozotocin was used to induce a diabetic model in C57BL/6J mice, and ulcers were surgically introduced. After phellopterin treatment, the skin lesions of diabetic mice were observed over a period of time. The protein and mRNA expression levels of SIRT1 and ICAM-1 were measured using H&E, qRT-PCR and immunohistochemical staining. A HaCaT cell inflammatory model was induced by IFN-γ. Using a lentiviral packaging technique, MTT assay, and Western blotting, the effect of phellopterin on the proliferation of HaCaT cells and the expression of ICAM-1 was evaluated under normal and SIRT1 knockdown conditions. RESULTS: High levels of ICAM-1 and IFN-γ were identified, but low levels of SIRT1 were found in human diabetic ulcer tissues, and phellopterin showed therapeutic benefits in the healing process by attenuating chronic inflammation and promoting re-epithelialization, along with SIRT1 upregulation and ICAM-1 downregulation. However, inhibiting SIRT1 reversed its proliferative and anti-inflammatory effects. CONCLUSION: In vitro and in vivo, phellopterin exerts anti-inflammatory and proliferative effects that promote diabetic wound healing, and the potential mechanism depends on SIRT1.


Angelica , Diabetes Mellitus, Experimental , Angelica/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Cell Adhesion Molecule-1 , Coumarins/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Humans , Inflammation , Intercellular Adhesion Molecule-1 , Mice , Mice, Inbred C57BL , RNA, Messenger , Sirtuin 1/metabolism , Streptozocin/pharmacology , Ulcer , Wound Healing
17.
Molecules ; 27(17)2022 Sep 05.
Article En | MEDLINE | ID: mdl-36080485

Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 µM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 µM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.


Angelica , Diabetes Mellitus , Furocoumarins , Angelica/chemistry , Diabetes Mellitus/drug therapy , Humans , Hypoglycemic Agents/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , alpha-Glucosidases/metabolism
18.
Anal Biochem ; 655: 114869, 2022 10 15.
Article En | MEDLINE | ID: mdl-35988798

A novel, simple and efficient capillary electrophoresis method was developed to simultaneous determination of six furanocoumarins (psoralen, isopsoralen, imperatorin, isoimperatorin, phellopterin, and cnidilin). The separation buffer consisted of 30 mM boric acid, 12 mM sulfobutylether-ß-cyclodextrin and 1.5 mM 2-hydroxypropyl-ß-cyclodextrin (pH 7.8); the voltage was 20 kV, the temperature was 25 °C and the detection wavelength was at 246 nm with a diode array detector (DAD). Under the above conditions, the analytes could be separated with high resolution in less than 7 min. This method was used to simultaneously determine the content of psoralen, imperatorin, isoimperatorin and phellopterin in Angelica Dahurica Radix. And good linearities were obtained with correlation coefficients from 0.9992 to 0.9999. The limits of detection (LOD, S/N = 3) and the limits of quantitation (LOQ, S/N = 10) ranged from 0.6 to 3.0 µg/mL and from 2.1 to 9.9 µg/mL, respectively. The recoveries ranged between 98.8% and 101.8%. The results indicated the method can achieve baseline separation and quantitative analysis of furanocoumarins in Chinese herbal medicines and formulations.


Angelica , Drugs, Chinese Herbal , Furocoumarins , Angelica/chemistry , Drugs, Chinese Herbal/chemistry , Electrophoresis, Capillary , Furocoumarins/analysis , Furocoumarins/chemistry , Plant Roots/chemistry
19.
Article En | MEDLINE | ID: mdl-35921697

Traditional Chinese medicine is a rich source of natural products and has a long history of use because of its remarkable clinical efficacy. In the present study, the chemical constitutes of Angelica pubescens were studied by ultra high performance liquid chromatography and high-resolution Orbitrap mass spectrometry (UPLC-HR-Orbitrap-MS). A total of 78 compounds were identified and the main composition were coumarins and phenolic acids. Then, the neuraminidase was incubated with extract of Angelica pubescens to screen the neuraminidase inhibitors by affinity ultrafiltration methods. As a result, 13 small molecules were discovered to interact with neuraminidase for the first time. In vitro neuraminidase inhibitory activity of the screened compounds and extract of Angelica pubescens was tested, and isochlorogenic acid C, isochlorogenic acid B, osthole, chlorogenic acid, xanthotoxin, phellopterin and imperatorin were proved to have this activity. In addition, molecular docking analysis was conducted to predict the potential docking position. This study may provide a reference for the medical substance basis in Angelica and the clinical usage of this drug.


Angelica , Drugs, Chinese Herbal , Angelica/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Neuraminidase , Ultrafiltration
20.
Article En | MEDLINE | ID: mdl-35839628

In this study, a new enantioseparation method was established for the quantitative analysis of the oxypeucedanin enantiomers by using cellulose tris(3,5-dichlorophenyl carbamate) stationary phase column Chiralpak IC. For this method, enantiomeric separation of oxypeucedanin was achieved with the mobile phase consisting of acetonitrile-water (60:40, v/v) at a flow rate of 0.5 mL/min by changing the type and proportion of mobile phase. And the quantitative determination of racemic oxypeucedanin in Angelica Dahuricae Radix (in vitro) and rat plasma (in vivo) were performed on above-mentioned condition by High PerformanceLiquid Chromatography combined with diode arrangement detector (HPLC-DAD) and mass spectrometry (HPLC-MS/MS). The precision, repeatability, stability, recovery were within the acceptance criteria. And the method was validated in the concentration range of 1-400 µg/mL for the two enantiomers in vitro and 0.2-600 ng/mL in vivo. After validation, the established method was successfully applied to the stereoselective analysis of racemic oxypeucedanin in Angelica dahurica from different regions and the stereoselective pharmacokinetic investigation in rat. Results showed that the (+)-oxypeucedanin was at a relative high level in Angelica dahuricae Radix and (-)-oxypeucedanin performed a higher plasma concentration, which demonstrated the difference of oxypeucedanin enantiomers both in vitro and in vivo.


Angelica , Furocoumarins , Angelica/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Rats , Tandem Mass Spectrometry/methods
...